DIFFERENTIATION

1

$$
\mathrm{f}(x) \equiv 7+24 x+3 x^{2}-x^{3}
$$

a Find $\mathrm{f}^{\prime}(x)$.
b Find the set of values of x for which $\mathrm{f}(x)$ is increasing.
2 The curve with equation $y=x^{3}+a x^{2}-24 x+b$, where a and b are constants, passes through the point $P(-2,30)$.
a Show that $4 a+b+10=0$.
Given also that P is a stationary point of the curve,
b find the values of a and b,
c find the coordinates of the other stationary point on the curve.

$$
\mathrm{f}(x) \equiv x^{2}+\frac{16}{x}, \quad x \neq 0
$$

a Find $\mathrm{f}^{\prime}(x)$.
b Find the coordinates of the stationary point of the curve $y=\mathrm{f}(x)$ and determine its nature.

4

The diagram shows a design to be used on a new brand of cat-food. The design consists of three circular sectors, each of radius $r \mathrm{~cm}$. The angle of two of the sectors is θ radians and the angle of the third sector is 3θ radians as shown.
Given that the area of the design is $25 \mathrm{~cm}^{2}$,
a show that $\theta=\frac{10}{r^{2}}$,
b find the perimeter of the design, $P \mathrm{~cm}$, in terms of r.
Given that r can vary,
c find the value of r for which P takes it minimum value,
d find the minimum value of P,
e justify that the value you have found is a minimum.
5 The curve C has the equation

$$
y=2 x-x^{\frac{3}{2}}, \quad x \geq 0
$$

a Find the coordinates of any points where C meets the x-axis.
b Find the x-coordinate of the stationary point on C and determine whether it is a maximum or a minimum point.
c Sketch the curve C.

6 The curve $y=x^{3}-3 x+1$ is stationary at the points P and Q.
a Find the coordinates of the points P and Q.
b Find the length of $P Q$ in the form $k \sqrt{5}$.

7

$$
\begin{equation*}
\mathrm{f}(x) \equiv 2 x-5+\frac{2}{x}, \quad x \neq 0 \tag{3}
\end{equation*}
$$

a Solve the equation $\mathrm{f}(x)=0$.
b Solve the equation $\mathrm{f}^{\prime}(x)=0$.
c Sketch the curve $y=\mathrm{f}(x)$, showing the coordinates of any turning points and of any points where the curve crosses the coordinate axes.

8

Two identical rectangles of width $x \mathrm{~cm}$ are removed from a rectangular piece of card measuring 25 cm by 40 cm as shown in the diagram above. The remaining card is the net of a cuboid of height $x \mathrm{~cm}$.
a Find expressions in terms of x for the length and width of the base of the cuboid formed from the net.
b Show that the volume of the cuboid is $\left(2 x^{3}-65 x^{2}+500 x\right) \mathrm{cm}^{3}$.
c Find the value of x for which the volume of the cuboid is a maximum.
d Find the maximum volume of the cuboid and show that it is a maximum.
9 a Find the coordinates of the stationary points on the curve

$$
\begin{equation*}
y=2+9 x+3 x^{2}-x^{3} \tag{6}
\end{equation*}
$$

b Determine whether each stationary point is a maximum or minimum point.
c State the set of values of k for which the equation

$$
\begin{equation*}
2+9 x+3 x^{2}-x^{3}=k \tag{2}
\end{equation*}
$$

has three solutions.

$$
\mathrm{f}(x)=4 x^{3}+a x^{2}-12 x+b
$$

Given that a and b are constants and that when $\mathrm{f}(x)$ is divided by $(x+1)$ there is a remainder of 15 ,
a find the value of $(a+b)$.
Given also that when $\mathrm{f}(x)$ is divided by $(x-2)$ there is a remainder of 42 ,
b find the values of a and b,
c find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$.

